This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shlej2 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shlej1 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) | |
| 2 | shjcom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐴 ) ) | |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐴 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐴 ) ) |
| 5 | shjcom | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) ) |
| 8 | 1 4 7 | 3sstr3d | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |