This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shlej1 | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A vH C ) C_ ( B vH C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> A C_ B ) |
|
| 2 | unss1 | |- ( A C_ B -> ( A u. C ) C_ ( B u. C ) ) |
|
| 3 | simpl1 | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> A e. SH ) |
|
| 4 | shss | |- ( A e. SH -> A C_ ~H ) |
|
| 5 | 3 4 | syl | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> A C_ ~H ) |
| 6 | simpl3 | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> C e. SH ) |
|
| 7 | shss | |- ( C e. SH -> C C_ ~H ) |
|
| 8 | 6 7 | syl | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> C C_ ~H ) |
| 9 | 5 8 | unssd | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A u. C ) C_ ~H ) |
| 10 | simpl2 | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> B e. SH ) |
|
| 11 | shss | |- ( B e. SH -> B C_ ~H ) |
|
| 12 | 10 11 | syl | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> B C_ ~H ) |
| 13 | 12 8 | unssd | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( B u. C ) C_ ~H ) |
| 14 | occon2 | |- ( ( ( A u. C ) C_ ~H /\ ( B u. C ) C_ ~H ) -> ( ( A u. C ) C_ ( B u. C ) -> ( _|_ ` ( _|_ ` ( A u. C ) ) ) C_ ( _|_ ` ( _|_ ` ( B u. C ) ) ) ) ) |
|
| 15 | 9 13 14 | syl2anc | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( ( A u. C ) C_ ( B u. C ) -> ( _|_ ` ( _|_ ` ( A u. C ) ) ) C_ ( _|_ ` ( _|_ ` ( B u. C ) ) ) ) ) |
| 16 | 2 15 | syl5 | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A C_ B -> ( _|_ ` ( _|_ ` ( A u. C ) ) ) C_ ( _|_ ` ( _|_ ` ( B u. C ) ) ) ) ) |
| 17 | 1 16 | mpd | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( _|_ ` ( _|_ ` ( A u. C ) ) ) C_ ( _|_ ` ( _|_ ` ( B u. C ) ) ) ) |
| 18 | shjval | |- ( ( A e. SH /\ C e. SH ) -> ( A vH C ) = ( _|_ ` ( _|_ ` ( A u. C ) ) ) ) |
|
| 19 | 3 6 18 | syl2anc | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A vH C ) = ( _|_ ` ( _|_ ` ( A u. C ) ) ) ) |
| 20 | shjval | |- ( ( B e. SH /\ C e. SH ) -> ( B vH C ) = ( _|_ ` ( _|_ ` ( B u. C ) ) ) ) |
|
| 21 | 10 6 20 | syl2anc | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( B vH C ) = ( _|_ ` ( _|_ ` ( B u. C ) ) ) ) |
| 22 | 17 19 21 | 3sstr4d | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A vH C ) C_ ( B vH C ) ) |