This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a shifted sequence. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftval5 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ ( 𝐵 + 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | simpr | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 3 | addcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 + 𝐴 ) ∈ ℂ ) | |
| 4 | 1 | shftval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 + 𝐴 ) ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ ( 𝐵 + 𝐴 ) ) = ( 𝐹 ‘ ( ( 𝐵 + 𝐴 ) − 𝐴 ) ) ) |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ ( 𝐵 + 𝐴 ) ) = ( 𝐹 ‘ ( ( 𝐵 + 𝐴 ) − 𝐴 ) ) ) |
| 6 | pncan | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) − 𝐴 ) = 𝐵 ) | |
| 7 | 6 | fveq2d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐹 ‘ ( ( 𝐵 + 𝐴 ) − 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 8 | 5 7 | eqtrd | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ ( 𝐵 + 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ ( 𝐵 + 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |