This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a sequence shifted by A - B . (Contributed by NM, 20-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftval3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | 0cn | ⊢ 0 ∈ ℂ | |
| 3 | 1 | shftval2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 0 ) ) = ( 𝐹 ‘ ( 𝐵 + 0 ) ) ) |
| 4 | 2 3 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 0 ) ) = ( 𝐹 ‘ ( 𝐵 + 0 ) ) ) |
| 5 | addrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 0 ) ) = ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ 𝐴 ) ) |
| 8 | addrid | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 + 0 ) = 𝐵 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + 0 ) = 𝐵 ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐹 ‘ ( 𝐵 + 0 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 11 | 4 7 10 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |