This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a fiber of the relation F . (Contributed by Mario Carneiro, 4-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | |- F e. _V |
|
| Assertion | shftfib | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) " { B } ) = ( F " { ( B - A ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | |- F e. _V |
|
| 2 | 1 | shftfval | |- ( A e. CC -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
| 3 | 2 | breqd | |- ( A e. CC -> ( B ( F shift A ) z <-> B { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } z ) ) |
| 4 | eleq1 | |- ( x = B -> ( x e. CC <-> B e. CC ) ) |
|
| 5 | oveq1 | |- ( x = B -> ( x - A ) = ( B - A ) ) |
|
| 6 | 5 | breq1d | |- ( x = B -> ( ( x - A ) F y <-> ( B - A ) F y ) ) |
| 7 | 4 6 | anbi12d | |- ( x = B -> ( ( x e. CC /\ ( x - A ) F y ) <-> ( B e. CC /\ ( B - A ) F y ) ) ) |
| 8 | breq2 | |- ( y = z -> ( ( B - A ) F y <-> ( B - A ) F z ) ) |
|
| 9 | 8 | anbi2d | |- ( y = z -> ( ( B e. CC /\ ( B - A ) F y ) <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
| 10 | eqid | |- { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } |
|
| 11 | 7 9 10 | brabg | |- ( ( B e. CC /\ z e. _V ) -> ( B { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
| 12 | 11 | elvd | |- ( B e. CC -> ( B { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
| 13 | 3 12 | sylan9bb | |- ( ( A e. CC /\ B e. CC ) -> ( B ( F shift A ) z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
| 14 | ibar | |- ( B e. CC -> ( ( B - A ) F z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
|
| 15 | 14 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( ( B - A ) F z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
| 16 | 13 15 | bitr4d | |- ( ( A e. CC /\ B e. CC ) -> ( B ( F shift A ) z <-> ( B - A ) F z ) ) |
| 17 | 16 | abbidv | |- ( ( A e. CC /\ B e. CC ) -> { z | B ( F shift A ) z } = { z | ( B - A ) F z } ) |
| 18 | imasng | |- ( B e. CC -> ( ( F shift A ) " { B } ) = { z | B ( F shift A ) z } ) |
|
| 19 | 18 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) " { B } ) = { z | B ( F shift A ) z } ) |
| 20 | ovex | |- ( B - A ) e. _V |
|
| 21 | imasng | |- ( ( B - A ) e. _V -> ( F " { ( B - A ) } ) = { z | ( B - A ) F z } ) |
|
| 22 | 20 21 | mp1i | |- ( ( A e. CC /\ B e. CC ) -> ( F " { ( B - A ) } ) = { z | ( B - A ) F z } ) |
| 23 | 17 19 22 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) " { B } ) = ( F " { ( B - A ) } ) ) |