This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgrp0 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Smgrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgm0 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Mgm ) | |
| 2 | rzal | ⊢ ( ( Base ‘ 𝑀 ) = ∅ → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 6 | 4 5 | issgrp | ⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) |
| 7 | 1 3 6 | sylanbrc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Smgrp ) |