This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mgm0 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Mgm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rzal | ⊢ ( ( Base ‘ 𝑀 ) = ∅ → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 3 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 5 | 3 4 | ismgm | ⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) ) |
| 7 | 2 6 | mpbird | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Mgm ) |