This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgrp0 | |- ( ( M e. V /\ ( Base ` M ) = (/) ) -> M e. Smgrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgm0 | |- ( ( M e. V /\ ( Base ` M ) = (/) ) -> M e. Mgm ) |
|
| 2 | rzal | |- ( ( Base ` M ) = (/) -> A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) |
|
| 3 | 2 | adantl | |- ( ( M e. V /\ ( Base ` M ) = (/) ) -> A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) |
| 4 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 5 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 6 | 4 5 | issgrp | |- ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) ) |
| 7 | 1 3 6 | sylanbrc | |- ( ( M e. V /\ ( Base ` M ) = (/) ) -> M e. Smgrp ) |