This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cxp0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| cxpefd.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| cxpexpzd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| Assertion | cxpexpzd | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | cxpefd.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 3 | cxpexpzd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 4 | cxpexpz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐵 ) = ( 𝐴 ↑ 𝐵 ) ) |