This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | basprssdmsets.s | ⊢ ( 𝜑 → 𝑆 Struct 𝑋 ) | |
| basprssdmsets.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) | ||
| basprssdmsets.w | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| basprssdmsets.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝑆 ) | ||
| Assertion | basprssdmsets | ⊢ ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ dom ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basprssdmsets.s | ⊢ ( 𝜑 → 𝑆 Struct 𝑋 ) | |
| 2 | basprssdmsets.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) | |
| 3 | basprssdmsets.w | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 4 | basprssdmsets.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝑆 ) | |
| 5 | 4 | orcd | ⊢ ( 𝜑 → ( ( Base ‘ ndx ) ∈ dom 𝑆 ∨ ( Base ‘ ndx ) ∈ { 𝐼 } ) ) |
| 6 | elun | ⊢ ( ( Base ‘ ndx ) ∈ ( dom 𝑆 ∪ { 𝐼 } ) ↔ ( ( Base ‘ ndx ) ∈ dom 𝑆 ∨ ( Base ‘ ndx ) ∈ { 𝐼 } ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ ( dom 𝑆 ∪ { 𝐼 } ) ) |
| 8 | snidg | ⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ∈ { 𝐼 } ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐼 ∈ { 𝐼 } ) |
| 10 | 9 | olcd | ⊢ ( 𝜑 → ( 𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ { 𝐼 } ) ) |
| 11 | elun | ⊢ ( 𝐼 ∈ ( dom 𝑆 ∪ { 𝐼 } ) ↔ ( 𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ { 𝐼 } ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝜑 → 𝐼 ∈ ( dom 𝑆 ∪ { 𝐼 } ) ) |
| 13 | 7 12 | prssd | ⊢ ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ ( dom 𝑆 ∪ { 𝐼 } ) ) |
| 14 | structex | ⊢ ( 𝑆 Struct 𝑋 → 𝑆 ∈ V ) | |
| 15 | 1 14 | syl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 16 | setsdm | ⊢ ( ( 𝑆 ∈ V ∧ 𝐸 ∈ 𝑊 ) → dom ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) = ( dom 𝑆 ∪ { 𝐼 } ) ) | |
| 17 | 15 3 16 | syl2anc | ⊢ ( 𝜑 → dom ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) = ( dom 𝑆 ∪ { 𝐼 } ) ) |
| 18 | 13 17 | sseqtrrd | ⊢ ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ dom ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ) |