This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsn0fun.s | ⊢ ( 𝜑 → 𝑆 Struct 𝑋 ) | |
| setsn0fun.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) | ||
| setsn0fun.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| Assertion | setsn0fun | ⊢ ( 𝜑 → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsn0fun.s | ⊢ ( 𝜑 → 𝑆 Struct 𝑋 ) | |
| 2 | setsn0fun.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) | |
| 3 | setsn0fun.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 4 | structn0fun | ⊢ ( 𝑆 Struct 𝑋 → Fun ( 𝑆 ∖ { ∅ } ) ) | |
| 5 | structex | ⊢ ( 𝑆 Struct 𝑋 → 𝑆 ∈ V ) | |
| 6 | setsfun0 | ⊢ ( ( ( 𝑆 ∈ V ∧ Fun ( 𝑆 ∖ { ∅ } ) ) ∧ ( 𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊 ) ) → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) | |
| 7 | 5 6 | sylanl1 | ⊢ ( ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) ∧ ( 𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊 ) ) → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) |
| 8 | 7 | expcom | ⊢ ( ( 𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
| 9 | 2 3 8 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
| 10 | 9 | com12 | ⊢ ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) → ( 𝜑 → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
| 11 | 4 10 | mpdan | ⊢ ( 𝑆 Struct 𝑋 → ( 𝜑 → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
| 12 | 1 11 | mpcom | ⊢ ( 𝜑 → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) |