This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqomlem.a | ⊢ 𝑄 = rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) | |
| Assertion | seqomlem3 | ⊢ ( ( 𝑄 “ ω ) ‘ ∅ ) = ( I ‘ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqomlem.a | ⊢ 𝑄 = rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) | |
| 2 | peano1 | ⊢ ∅ ∈ ω | |
| 3 | fvres | ⊢ ( ∅ ∈ ω → ( ( 𝑄 ↾ ω ) ‘ ∅ ) = ( 𝑄 ‘ ∅ ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( 𝑄 ↾ ω ) ‘ ∅ ) = ( 𝑄 ‘ ∅ ) |
| 5 | 1 | fveq1i | ⊢ ( 𝑄 ‘ ∅ ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ ∅ ) |
| 6 | opex | ⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ V | |
| 7 | 6 | rdg0 | ⊢ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 |
| 8 | 4 5 7 | 3eqtri | ⊢ ( ( 𝑄 ↾ ω ) ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 |
| 9 | frfnom | ⊢ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) Fn ω | |
| 10 | 1 | reseq1i | ⊢ ( 𝑄 ↾ ω ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) |
| 11 | 10 | fneq1i | ⊢ ( ( 𝑄 ↾ ω ) Fn ω ↔ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) Fn ω ) |
| 12 | 9 11 | mpbir | ⊢ ( 𝑄 ↾ ω ) Fn ω |
| 13 | fnfvelrn | ⊢ ( ( ( 𝑄 ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( 𝑄 ↾ ω ) ‘ ∅ ) ∈ ran ( 𝑄 ↾ ω ) ) | |
| 14 | 12 2 13 | mp2an | ⊢ ( ( 𝑄 ↾ ω ) ‘ ∅ ) ∈ ran ( 𝑄 ↾ ω ) |
| 15 | 8 14 | eqeltrri | ⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ ran ( 𝑄 ↾ ω ) |
| 16 | df-ima | ⊢ ( 𝑄 “ ω ) = ran ( 𝑄 ↾ ω ) | |
| 17 | 15 16 | eleqtrri | ⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ ( 𝑄 “ ω ) |
| 18 | df-br | ⊢ ( ∅ ( 𝑄 “ ω ) ( I ‘ 𝐼 ) ↔ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ ( 𝑄 “ ω ) ) | |
| 19 | 17 18 | mpbir | ⊢ ∅ ( 𝑄 “ ω ) ( I ‘ 𝐼 ) |
| 20 | 1 | seqomlem2 | ⊢ ( 𝑄 “ ω ) Fn ω |
| 21 | fnbrfvb | ⊢ ( ( ( 𝑄 “ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( ( 𝑄 “ ω ) ‘ ∅ ) = ( I ‘ 𝐼 ) ↔ ∅ ( 𝑄 “ ω ) ( I ‘ 𝐼 ) ) ) | |
| 22 | 20 2 21 | mp2an | ⊢ ( ( ( 𝑄 “ ω ) ‘ ∅ ) = ( I ‘ 𝐼 ) ↔ ∅ ( 𝑄 “ ω ) ( I ‘ 𝐼 ) ) |
| 23 | 19 22 | mpbir | ⊢ ( ( 𝑄 “ ω ) ‘ ∅ ) = ( I ‘ 𝐼 ) |