This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqomlem.a | |- Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |
|
| Assertion | seqomlem3 | |- ( ( Q " _om ) ` (/) ) = ( _I ` I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqomlem.a | |- Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |
|
| 2 | peano1 | |- (/) e. _om |
|
| 3 | fvres | |- ( (/) e. _om -> ( ( Q |` _om ) ` (/) ) = ( Q ` (/) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( Q |` _om ) ` (/) ) = ( Q ` (/) ) |
| 5 | 1 | fveq1i | |- ( Q ` (/) ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) |
| 6 | opex | |- <. (/) , ( _I ` I ) >. e. _V |
|
| 7 | 6 | rdg0 | |- ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) = <. (/) , ( _I ` I ) >. |
| 8 | 4 5 7 | 3eqtri | |- ( ( Q |` _om ) ` (/) ) = <. (/) , ( _I ` I ) >. |
| 9 | frfnom | |- ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om |
|
| 10 | 1 | reseq1i | |- ( Q |` _om ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) |
| 11 | 10 | fneq1i | |- ( ( Q |` _om ) Fn _om <-> ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om ) |
| 12 | 9 11 | mpbir | |- ( Q |` _om ) Fn _om |
| 13 | fnfvelrn | |- ( ( ( Q |` _om ) Fn _om /\ (/) e. _om ) -> ( ( Q |` _om ) ` (/) ) e. ran ( Q |` _om ) ) |
|
| 14 | 12 2 13 | mp2an | |- ( ( Q |` _om ) ` (/) ) e. ran ( Q |` _om ) |
| 15 | 8 14 | eqeltrri | |- <. (/) , ( _I ` I ) >. e. ran ( Q |` _om ) |
| 16 | df-ima | |- ( Q " _om ) = ran ( Q |` _om ) |
|
| 17 | 15 16 | eleqtrri | |- <. (/) , ( _I ` I ) >. e. ( Q " _om ) |
| 18 | df-br | |- ( (/) ( Q " _om ) ( _I ` I ) <-> <. (/) , ( _I ` I ) >. e. ( Q " _om ) ) |
|
| 19 | 17 18 | mpbir | |- (/) ( Q " _om ) ( _I ` I ) |
| 20 | 1 | seqomlem2 | |- ( Q " _om ) Fn _om |
| 21 | fnbrfvb | |- ( ( ( Q " _om ) Fn _om /\ (/) e. _om ) -> ( ( ( Q " _om ) ` (/) ) = ( _I ` I ) <-> (/) ( Q " _om ) ( _I ` I ) ) ) |
|
| 22 | 20 2 21 | mp2an | |- ( ( ( Q " _om ) ` (/) ) = ( _I ` I ) <-> (/) ( Q " _om ) ( _I ` I ) ) |
| 23 | 19 22 | mpbir | |- ( ( Q " _om ) ` (/) ) = ( _I ` I ) |