This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqom . Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqomlem0 | ⊢ rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) = rec ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ 〈 suc 𝑐 , ( 𝑐 𝐹 𝑑 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq | ⊢ ( 𝑎 = 𝑐 → suc 𝑎 = suc 𝑐 ) | |
| 2 | oveq1 | ⊢ ( 𝑎 = 𝑐 → ( 𝑎 𝐹 𝑏 ) = ( 𝑐 𝐹 𝑏 ) ) | |
| 3 | 1 2 | opeq12d | ⊢ ( 𝑎 = 𝑐 → 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 = 〈 suc 𝑐 , ( 𝑐 𝐹 𝑏 ) 〉 ) |
| 4 | oveq2 | ⊢ ( 𝑏 = 𝑑 → ( 𝑐 𝐹 𝑏 ) = ( 𝑐 𝐹 𝑑 ) ) | |
| 5 | 4 | opeq2d | ⊢ ( 𝑏 = 𝑑 → 〈 suc 𝑐 , ( 𝑐 𝐹 𝑏 ) 〉 = 〈 suc 𝑐 , ( 𝑐 𝐹 𝑑 ) 〉 ) |
| 6 | 3 5 | cbvmpov | ⊢ ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) = ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ 〈 suc 𝑐 , ( 𝑐 𝐹 𝑑 ) 〉 ) |
| 7 | rdgeq1 | ⊢ ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) = ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ 〈 suc 𝑐 , ( 𝑐 𝐹 𝑑 ) 〉 ) → rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) = rec ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ 〈 suc 𝑐 , ( 𝑐 𝐹 𝑑 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ) | |
| 8 | 6 7 | ax-mp | ⊢ rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) = rec ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ 〈 suc 𝑐 , ( 𝑐 𝐹 𝑑 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |