This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index-aware recursive definitions over _om . A mashup of df-rdg and df-seq , this allows for recursive definitions that use an index in the recursion in cases where Infinity is not admitted. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-seqom | ⊢ seqω ( 𝐹 , 𝐼 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cF | ⊢ 𝐹 | |
| 1 | cI | ⊢ 𝐼 | |
| 2 | 0 1 | cseqom | ⊢ seqω ( 𝐹 , 𝐼 ) |
| 3 | vi | ⊢ 𝑖 | |
| 4 | com | ⊢ ω | |
| 5 | vv | ⊢ 𝑣 | |
| 6 | cvv | ⊢ V | |
| 7 | 3 | cv | ⊢ 𝑖 |
| 8 | 7 | csuc | ⊢ suc 𝑖 |
| 9 | 5 | cv | ⊢ 𝑣 |
| 10 | 7 9 0 | co | ⊢ ( 𝑖 𝐹 𝑣 ) |
| 11 | 8 10 | cop | ⊢ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 |
| 12 | 3 5 4 6 11 | cmpo | ⊢ ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) |
| 13 | c0 | ⊢ ∅ | |
| 14 | cid | ⊢ I | |
| 15 | 1 14 | cfv | ⊢ ( I ‘ 𝐼 ) |
| 16 | 13 15 | cop | ⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 |
| 17 | 12 16 | crdg | ⊢ rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |
| 18 | 17 4 | cima | ⊢ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) |
| 19 | 2 18 | wceq | ⊢ seqω ( 𝐹 , 𝐼 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) |