This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by Mario Carneiro, 26-Mar-2014) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqabs.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| seqabs.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
||
| seqabs.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
||
| Assertion | seqabs | |- ( ph -> ( abs ` ( seq M ( + , F ) ` N ) ) <_ ( seq M ( + , G ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqabs.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | seqabs.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
|
| 3 | seqabs.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
|
| 4 | fzfid | |- ( ph -> ( M ... N ) e. Fin ) |
|
| 5 | 4 2 | fsumabs | |- ( ph -> ( abs ` sum_ k e. ( M ... N ) ( F ` k ) ) <_ sum_ k e. ( M ... N ) ( abs ` ( F ` k ) ) ) |
| 6 | eqidd | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 7 | 6 1 2 | fsumser | |- ( ph -> sum_ k e. ( M ... N ) ( F ` k ) = ( seq M ( + , F ) ` N ) ) |
| 8 | 7 | fveq2d | |- ( ph -> ( abs ` sum_ k e. ( M ... N ) ( F ` k ) ) = ( abs ` ( seq M ( + , F ) ` N ) ) ) |
| 9 | abscl | |- ( ( F ` k ) e. CC -> ( abs ` ( F ` k ) ) e. RR ) |
|
| 10 | 9 | recnd | |- ( ( F ` k ) e. CC -> ( abs ` ( F ` k ) ) e. CC ) |
| 11 | 2 10 | syl | |- ( ( ph /\ k e. ( M ... N ) ) -> ( abs ` ( F ` k ) ) e. CC ) |
| 12 | 3 1 11 | fsumser | |- ( ph -> sum_ k e. ( M ... N ) ( abs ` ( F ` k ) ) = ( seq M ( + , G ) ` N ) ) |
| 13 | 5 8 12 | 3brtr3d | |- ( ph -> ( abs ` ( seq M ( + , F ) ` N ) ) <_ ( seq M ( + , G ) ` N ) ) |