This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
sdom0
Metamath Proof Explorer
Description: The empty set does not strictly dominate any set. (Contributed by NM , 26-Oct-2003) Avoid ax-pow , ax-un . (Revised by BTernaryTau , 29-Nov-2024)
Ref
Expression
Assertion
sdom0
⊢ ¬ A ≺ ∅
Proof
Step
Hyp
Ref
Expression
1
dom0
⊢ A ≼ ∅ ↔ A = ∅
2
en0
⊢ A ≈ ∅ ↔ A = ∅
3
1 2
sylbb2
⊢ A ≼ ∅ → A ≈ ∅
4
iman
⊢ A ≼ ∅ → A ≈ ∅ ↔ ¬ A ≼ ∅ ∧ ¬ A ≈ ∅
5
3 4
mpbi
⊢ ¬ A ≼ ∅ ∧ ¬ A ≈ ∅
6
brsdom
⊢ A ≺ ∅ ↔ A ≼ ∅ ∧ ¬ A ≈ ∅
7
5 6
mtbir
⊢ ¬ A ≺ ∅