This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution into an at-most-one quantifier. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbmo | ⊢ ( [ 𝑦 / 𝑥 ] ∃* 𝑧 𝜑 ↔ ∃* 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbex | ⊢ ( [ 𝑦 / 𝑥 ] ∃ 𝑤 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ∃ 𝑤 [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ) | |
| 2 | nfv | ⊢ Ⅎ 𝑥 𝑧 = 𝑤 | |
| 3 | 2 | sblim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝑧 = 𝑤 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) |
| 4 | 3 | sbalv | ⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑤 [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) |
| 6 | 1 5 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ∃ 𝑤 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) |
| 7 | df-mo | ⊢ ( ∃* 𝑧 𝜑 ↔ ∃ 𝑤 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ) | |
| 8 | 7 | sbbii | ⊢ ( [ 𝑦 / 𝑥 ] ∃* 𝑧 𝜑 ↔ [ 𝑦 / 𝑥 ] ∃ 𝑤 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ) |
| 9 | df-mo | ⊢ ( ∃* 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑤 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) | |
| 10 | 6 8 9 | 3bitr4i | ⊢ ( [ 𝑦 / 𝑥 ] ∃* 𝑧 𝜑 ↔ ∃* 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |