This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution into an at-most-one quantifier. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbmo | |- ( [ y / x ] E* z ph <-> E* z [ y / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbex | |- ( [ y / x ] E. w A. z ( ph -> z = w ) <-> E. w [ y / x ] A. z ( ph -> z = w ) ) |
|
| 2 | nfv | |- F/ x z = w |
|
| 3 | 2 | sblim | |- ( [ y / x ] ( ph -> z = w ) <-> ( [ y / x ] ph -> z = w ) ) |
| 4 | 3 | sbalv | |- ( [ y / x ] A. z ( ph -> z = w ) <-> A. z ( [ y / x ] ph -> z = w ) ) |
| 5 | 4 | exbii | |- ( E. w [ y / x ] A. z ( ph -> z = w ) <-> E. w A. z ( [ y / x ] ph -> z = w ) ) |
| 6 | 1 5 | bitri | |- ( [ y / x ] E. w A. z ( ph -> z = w ) <-> E. w A. z ( [ y / x ] ph -> z = w ) ) |
| 7 | df-mo | |- ( E* z ph <-> E. w A. z ( ph -> z = w ) ) |
|
| 8 | 7 | sbbii | |- ( [ y / x ] E* z ph <-> [ y / x ] E. w A. z ( ph -> z = w ) ) |
| 9 | df-mo | |- ( E* z [ y / x ] ph <-> E. w A. z ( [ y / x ] ph -> z = w ) ) |
|
| 10 | 6 8 9 | 3bitr4i | |- ( [ y / x ] E* z ph <-> E* z [ y / x ] ph ) |