This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016) (Revised by NM, 18-Aug-2018) (Proof shortened by JJ, 7-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcrext | ⊢ ( Ⅎ 𝑦 𝐴 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V ) | |
| 2 | 1 | a1i | ⊢ ( Ⅎ 𝑦 𝐴 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V ) ) |
| 3 | nfnfc1 | ⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝐴 | |
| 4 | id | ⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝐴 ) | |
| 5 | nfcvd | ⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 V ) | |
| 6 | 4 5 | nfeld | ⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝐴 ∈ V ) |
| 7 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) | |
| 8 | 7 | 2a1i | ⊢ ( Ⅎ 𝑦 𝐴 → ( 𝑦 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) ) ) |
| 9 | 3 6 8 | rexlimd2 | ⊢ ( Ⅎ 𝑦 𝐴 → ( ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) ) |
| 10 | sbcng | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) ) |
| 12 | sbcralt | ⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑦 𝐴 ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] ¬ 𝜑 ) ) | |
| 13 | 12 | ancoms | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] ¬ 𝜑 ) ) |
| 14 | 3 6 | nfan1 | ⊢ Ⅎ 𝑦 ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) |
| 15 | sbcng | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 16 | 15 | adantl | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 17 | 14 16 | ralbid | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 18 | 13 17 | bitrd | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 19 | 18 | notbid | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( ¬ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 20 | 11 19 | bitrd | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 21 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) | |
| 22 | 21 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝐴 / 𝑥 ] ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) |
| 23 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) | |
| 24 | 20 22 23 | 3bitr4g | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 25 | 24 | ex | ⊢ ( Ⅎ 𝑦 𝐴 → ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 26 | 2 9 25 | pm5.21ndd | ⊢ ( Ⅎ 𝑦 𝐴 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |