This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016) (Revised by NM, 18-Aug-2018) (Proof shortened by JJ, 7-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcrext | |- ( F/_ y A -> ( [. A / x ]. E. y e. B ph <-> E. y e. B [. A / x ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | |- ( [. A / x ]. E. y e. B ph -> A e. _V ) |
|
| 2 | 1 | a1i | |- ( F/_ y A -> ( [. A / x ]. E. y e. B ph -> A e. _V ) ) |
| 3 | nfnfc1 | |- F/ y F/_ y A |
|
| 4 | id | |- ( F/_ y A -> F/_ y A ) |
|
| 5 | nfcvd | |- ( F/_ y A -> F/_ y _V ) |
|
| 6 | 4 5 | nfeld | |- ( F/_ y A -> F/ y A e. _V ) |
| 7 | sbcex | |- ( [. A / x ]. ph -> A e. _V ) |
|
| 8 | 7 | 2a1i | |- ( F/_ y A -> ( y e. B -> ( [. A / x ]. ph -> A e. _V ) ) ) |
| 9 | 3 6 8 | rexlimd2 | |- ( F/_ y A -> ( E. y e. B [. A / x ]. ph -> A e. _V ) ) |
| 10 | sbcng | |- ( A e. _V -> ( [. A / x ]. -. A. y e. B -. ph <-> -. [. A / x ]. A. y e. B -. ph ) ) |
|
| 11 | 10 | adantl | |- ( ( F/_ y A /\ A e. _V ) -> ( [. A / x ]. -. A. y e. B -. ph <-> -. [. A / x ]. A. y e. B -. ph ) ) |
| 12 | sbcralt | |- ( ( A e. _V /\ F/_ y A ) -> ( [. A / x ]. A. y e. B -. ph <-> A. y e. B [. A / x ]. -. ph ) ) |
|
| 13 | 12 | ancoms | |- ( ( F/_ y A /\ A e. _V ) -> ( [. A / x ]. A. y e. B -. ph <-> A. y e. B [. A / x ]. -. ph ) ) |
| 14 | 3 6 | nfan1 | |- F/ y ( F/_ y A /\ A e. _V ) |
| 15 | sbcng | |- ( A e. _V -> ( [. A / x ]. -. ph <-> -. [. A / x ]. ph ) ) |
|
| 16 | 15 | adantl | |- ( ( F/_ y A /\ A e. _V ) -> ( [. A / x ]. -. ph <-> -. [. A / x ]. ph ) ) |
| 17 | 14 16 | ralbid | |- ( ( F/_ y A /\ A e. _V ) -> ( A. y e. B [. A / x ]. -. ph <-> A. y e. B -. [. A / x ]. ph ) ) |
| 18 | 13 17 | bitrd | |- ( ( F/_ y A /\ A e. _V ) -> ( [. A / x ]. A. y e. B -. ph <-> A. y e. B -. [. A / x ]. ph ) ) |
| 19 | 18 | notbid | |- ( ( F/_ y A /\ A e. _V ) -> ( -. [. A / x ]. A. y e. B -. ph <-> -. A. y e. B -. [. A / x ]. ph ) ) |
| 20 | 11 19 | bitrd | |- ( ( F/_ y A /\ A e. _V ) -> ( [. A / x ]. -. A. y e. B -. ph <-> -. A. y e. B -. [. A / x ]. ph ) ) |
| 21 | dfrex2 | |- ( E. y e. B ph <-> -. A. y e. B -. ph ) |
|
| 22 | 21 | sbcbii | |- ( [. A / x ]. E. y e. B ph <-> [. A / x ]. -. A. y e. B -. ph ) |
| 23 | dfrex2 | |- ( E. y e. B [. A / x ]. ph <-> -. A. y e. B -. [. A / x ]. ph ) |
|
| 24 | 20 22 23 | 3bitr4g | |- ( ( F/_ y A /\ A e. _V ) -> ( [. A / x ]. E. y e. B ph <-> E. y e. B [. A / x ]. ph ) ) |
| 25 | 24 | ex | |- ( F/_ y A -> ( A e. _V -> ( [. A / x ]. E. y e. B ph <-> E. y e. B [. A / x ]. ph ) ) ) |
| 26 | 2 9 25 | pm5.21ndd | |- ( F/_ y A -> ( [. A / x ]. E. y e. B ph <-> E. y e. B [. A / x ]. ph ) ) |