This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008) (Revised by David Abernethy, 22-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcralt | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbccow | ⊢ ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) → 𝐴 ∈ 𝑉 ) | |
| 3 | sbsbc | ⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 5 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 6 | 4 5 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 |
| 7 | sbequ12 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 8 | 7 | ralbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 9 | 6 8 | sbiev | ⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 10 | 3 9 | bitr3i | ⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 11 | nfnfc1 | ⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝐴 | |
| 12 | nfcvd | ⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝑧 ) | |
| 13 | id | ⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝐴 ) | |
| 14 | 12 13 | nfeqd | ⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝑧 = 𝐴 ) |
| 15 | 11 14 | nfan1 | ⊢ Ⅎ 𝑦 ( Ⅎ 𝑦 𝐴 ∧ 𝑧 = 𝐴 ) |
| 16 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 17 | 16 | adantl | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝑧 = 𝐴 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 18 | 15 17 | ralbid | ⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝑧 = 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 19 | 18 | adantll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) ∧ 𝑧 = 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 20 | 10 19 | bitrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) ∧ 𝑧 = 𝐴 ) → ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 21 | 2 20 | sbcied | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) → ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 22 | 1 21 | bitr3id | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |