This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sb6 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ) | |
| 2 | 19.21v | ⊢ ( ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜑 ) ) ↔ ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) | |
| 3 | impexp | ⊢ ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ↔ ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜑 ) ) ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ↔ ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
| 5 | sb6 | ⊢ ( [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) | |
| 6 | 5 | imbi2i | ⊢ ( ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
| 7 | 2 4 6 | 3bitr4ri | ⊢ ( ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 9 | 1 8 | bitri | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |