This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of Megill p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997) (Proof shortened by Wolf Lammen, 23-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcom2 | |- ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sb6 | |- ( [ v / z ] [ u / x ] ph <-> A. z A. x ( ( z = v /\ x = u ) -> ph ) ) |
|
| 2 | alcom | |- ( A. z A. x ( ( z = v /\ x = u ) -> ph ) <-> A. x A. z ( ( z = v /\ x = u ) -> ph ) ) |
|
| 3 | ancomst | |- ( ( ( z = v /\ x = u ) -> ph ) <-> ( ( x = u /\ z = v ) -> ph ) ) |
|
| 4 | 3 | 2albii | |- ( A. x A. z ( ( z = v /\ x = u ) -> ph ) <-> A. x A. z ( ( x = u /\ z = v ) -> ph ) ) |
| 5 | 1 2 4 | 3bitri | |- ( [ v / z ] [ u / x ] ph <-> A. x A. z ( ( x = u /\ z = v ) -> ph ) ) |
| 6 | 2sb6 | |- ( [ u / x ] [ v / z ] ph <-> A. x A. z ( ( x = u /\ z = v ) -> ph ) ) |
|
| 7 | 5 6 | bitr4i | |- ( [ v / z ] [ u / x ] ph <-> [ u / x ] [ v / z ] ph ) |
| 8 | sbequ | |- ( u = y -> ( [ u / x ] ph <-> [ y / x ] ph ) ) |
|
| 9 | 8 | sbbidv | |- ( u = y -> ( [ v / z ] [ u / x ] ph <-> [ v / z ] [ y / x ] ph ) ) |
| 10 | 7 9 | bitr3id | |- ( u = y -> ( [ u / x ] [ v / z ] ph <-> [ v / z ] [ y / x ] ph ) ) |
| 11 | sbequ | |- ( v = w -> ( [ v / z ] [ y / x ] ph <-> [ w / z ] [ y / x ] ph ) ) |
|
| 12 | 10 11 | sylan9bb | |- ( ( u = y /\ v = w ) -> ( [ u / x ] [ v / z ] ph <-> [ w / z ] [ y / x ] ph ) ) |
| 13 | sbequ | |- ( v = w -> ( [ v / z ] ph <-> [ w / z ] ph ) ) |
|
| 14 | 13 | sbbidv | |- ( v = w -> ( [ u / x ] [ v / z ] ph <-> [ u / x ] [ w / z ] ph ) ) |
| 15 | sbequ | |- ( u = y -> ( [ u / x ] [ w / z ] ph <-> [ y / x ] [ w / z ] ph ) ) |
|
| 16 | 14 15 | sylan9bbr | |- ( ( u = y /\ v = w ) -> ( [ u / x ] [ v / z ] ph <-> [ y / x ] [ w / z ] ph ) ) |
| 17 | 12 16 | bitr3d | |- ( ( u = y /\ v = w ) -> ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) ) |
| 18 | 17 | ex | |- ( u = y -> ( v = w -> ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) ) ) |
| 19 | ax6ev | |- E. u u = y |
|
| 20 | 18 19 | exlimiiv | |- ( v = w -> ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) ) |
| 21 | ax6ev | |- E. v v = w |
|
| 22 | 20 21 | exlimiiv | |- ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) |