This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcel2 | |- ( [. A / x ]. B e. C <-> B e. [_ A / x ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcel12 | |- ( [. A / x ]. B e. C <-> [_ A / x ]_ B e. [_ A / x ]_ C ) |
|
| 2 | csbconstg | |- ( A e. _V -> [_ A / x ]_ B = B ) |
|
| 3 | 2 | eleq1d | |- ( A e. _V -> ( [_ A / x ]_ B e. [_ A / x ]_ C <-> B e. [_ A / x ]_ C ) ) |
| 4 | 1 3 | bitrid | |- ( A e. _V -> ( [. A / x ]. B e. C <-> B e. [_ A / x ]_ C ) ) |
| 5 | sbcex | |- ( [. A / x ]. B e. C -> A e. _V ) |
|
| 6 | 5 | con3i | |- ( -. A e. _V -> -. [. A / x ]. B e. C ) |
| 7 | noel | |- -. B e. (/) |
|
| 8 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ C = (/) ) |
|
| 9 | 8 | eleq2d | |- ( -. A e. _V -> ( B e. [_ A / x ]_ C <-> B e. (/) ) ) |
| 10 | 7 9 | mtbiri | |- ( -. A e. _V -> -. B e. [_ A / x ]_ C ) |
| 11 | 6 10 | 2falsed | |- ( -. A e. _V -> ( [. A / x ]. B e. C <-> B e. [_ A / x ]_ C ) ) |
| 12 | 4 11 | pm2.61i | |- ( [. A / x ]. B e. C <-> B e. [_ A / x ]_ C ) |