This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbccomlem as of 20-Aug-2025. (Contributed by NM, 14-Nov-2005) (Revised by Mario Carneiro, 18-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbccomlemOLD | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) | |
| 2 | exdistr | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) | |
| 3 | an12 | ⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑦 = 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) | |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ( 𝑦 = 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 5 | 19.42v | ⊢ ( ∃ 𝑥 ( 𝑦 = 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 8 | 1 2 7 | 3bitr3i | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 9 | sbc5 | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) | |
| 10 | sbc5 | ⊢ ( [ 𝐵 / 𝑦 ] ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) | |
| 11 | 8 9 10 | 3bitr4i | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ [ 𝐵 / 𝑦 ] ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 12 | sbc5 | ⊢ ( [ 𝐵 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) | |
| 13 | 12 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) |
| 14 | sbc5 | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) | |
| 15 | 14 | sbcbii | ⊢ ( [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 16 | 11 13 15 | 3bitr4i | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |