This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbccomlem as of 20-Aug-2025. (Contributed by NM, 14-Nov-2005) (Revised by Mario Carneiro, 18-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbccomlemOLD | |- ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. [. A / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom | |- ( E. x E. y ( x = A /\ ( y = B /\ ph ) ) <-> E. y E. x ( x = A /\ ( y = B /\ ph ) ) ) |
|
| 2 | exdistr | |- ( E. x E. y ( x = A /\ ( y = B /\ ph ) ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) |
|
| 3 | an12 | |- ( ( x = A /\ ( y = B /\ ph ) ) <-> ( y = B /\ ( x = A /\ ph ) ) ) |
|
| 4 | 3 | exbii | |- ( E. x ( x = A /\ ( y = B /\ ph ) ) <-> E. x ( y = B /\ ( x = A /\ ph ) ) ) |
| 5 | 19.42v | |- ( E. x ( y = B /\ ( x = A /\ ph ) ) <-> ( y = B /\ E. x ( x = A /\ ph ) ) ) |
|
| 6 | 4 5 | bitri | |- ( E. x ( x = A /\ ( y = B /\ ph ) ) <-> ( y = B /\ E. x ( x = A /\ ph ) ) ) |
| 7 | 6 | exbii | |- ( E. y E. x ( x = A /\ ( y = B /\ ph ) ) <-> E. y ( y = B /\ E. x ( x = A /\ ph ) ) ) |
| 8 | 1 2 7 | 3bitr3i | |- ( E. x ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. y ( y = B /\ E. x ( x = A /\ ph ) ) ) |
| 9 | sbc5 | |- ( [. A / x ]. E. y ( y = B /\ ph ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) |
|
| 10 | sbc5 | |- ( [. B / y ]. E. x ( x = A /\ ph ) <-> E. y ( y = B /\ E. x ( x = A /\ ph ) ) ) |
|
| 11 | 8 9 10 | 3bitr4i | |- ( [. A / x ]. E. y ( y = B /\ ph ) <-> [. B / y ]. E. x ( x = A /\ ph ) ) |
| 12 | sbc5 | |- ( [. B / y ]. ph <-> E. y ( y = B /\ ph ) ) |
|
| 13 | 12 | sbcbii | |- ( [. A / x ]. [. B / y ]. ph <-> [. A / x ]. E. y ( y = B /\ ph ) ) |
| 14 | sbc5 | |- ( [. A / x ]. ph <-> E. x ( x = A /\ ph ) ) |
|
| 15 | 14 | sbcbii | |- ( [. B / y ]. [. A / x ]. ph <-> [. B / y ]. E. x ( x = A /\ ph ) ) |
| 16 | 11 13 15 | 3bitr4i | |- ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. [. A / x ]. ph ) |