This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma. Factor out the common proof skeleton of sb8euv and sb8eu . Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 24-Aug-2019) Factor out common proof lines. (Revised by Wolf Lammen, 9-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sb8eulem.nfsb | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 | |
| Assertion | sb8eulem | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8eulem.nfsb | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 | |
| 2 | sb8v | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑤 [ 𝑤 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
| 3 | equsb3 | ⊢ ( [ 𝑤 / 𝑥 ] 𝑥 = 𝑧 ↔ 𝑤 = 𝑧 ) | |
| 4 | 3 | sblbis | ⊢ ( [ 𝑤 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝑤 = 𝑧 ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑤 [ 𝑤 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑤 ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝑤 = 𝑧 ) ) |
| 6 | nfv | ⊢ Ⅎ 𝑦 𝑤 = 𝑧 | |
| 7 | 1 6 | nfbi | ⊢ Ⅎ 𝑦 ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝑤 = 𝑧 ) |
| 8 | nfv | ⊢ Ⅎ 𝑤 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) | |
| 9 | sbequ | ⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 10 | equequ1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 = 𝑧 ↔ 𝑦 = 𝑧 ) ) | |
| 11 | 9 10 | bibi12d | ⊢ ( 𝑤 = 𝑦 → ( ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝑤 = 𝑧 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) ) ) |
| 12 | 7 8 11 | cbvalv1 | ⊢ ( ∀ 𝑤 ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝑤 = 𝑧 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) ) |
| 13 | 2 5 12 | 3bitri | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∃ 𝑧 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) ) |
| 15 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
| 16 | eu6 | ⊢ ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑧 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑧 ) ) | |
| 17 | 14 15 16 | 3bitr4i | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |