This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma. Factor out the common proof skeleton of sb8euv and sb8eu . Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 24-Aug-2019) Factor out common proof lines. (Revised by Wolf Lammen, 9-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sb8eulem.nfsb | |- F/ y [ w / x ] ph |
|
| Assertion | sb8eulem | |- ( E! x ph <-> E! y [ y / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8eulem.nfsb | |- F/ y [ w / x ] ph |
|
| 2 | sb8v | |- ( A. x ( ph <-> x = z ) <-> A. w [ w / x ] ( ph <-> x = z ) ) |
|
| 3 | equsb3 | |- ( [ w / x ] x = z <-> w = z ) |
|
| 4 | 3 | sblbis | |- ( [ w / x ] ( ph <-> x = z ) <-> ( [ w / x ] ph <-> w = z ) ) |
| 5 | 4 | albii | |- ( A. w [ w / x ] ( ph <-> x = z ) <-> A. w ( [ w / x ] ph <-> w = z ) ) |
| 6 | nfv | |- F/ y w = z |
|
| 7 | 1 6 | nfbi | |- F/ y ( [ w / x ] ph <-> w = z ) |
| 8 | nfv | |- F/ w ( [ y / x ] ph <-> y = z ) |
|
| 9 | sbequ | |- ( w = y -> ( [ w / x ] ph <-> [ y / x ] ph ) ) |
|
| 10 | equequ1 | |- ( w = y -> ( w = z <-> y = z ) ) |
|
| 11 | 9 10 | bibi12d | |- ( w = y -> ( ( [ w / x ] ph <-> w = z ) <-> ( [ y / x ] ph <-> y = z ) ) ) |
| 12 | 7 8 11 | cbvalv1 | |- ( A. w ( [ w / x ] ph <-> w = z ) <-> A. y ( [ y / x ] ph <-> y = z ) ) |
| 13 | 2 5 12 | 3bitri | |- ( A. x ( ph <-> x = z ) <-> A. y ( [ y / x ] ph <-> y = z ) ) |
| 14 | 13 | exbii | |- ( E. z A. x ( ph <-> x = z ) <-> E. z A. y ( [ y / x ] ph <-> y = z ) ) |
| 15 | eu6 | |- ( E! x ph <-> E. z A. x ( ph <-> x = z ) ) |
|
| 16 | eu6 | |- ( E! y [ y / x ] ph <-> E. z A. y ( [ y / x ] ph <-> y = z ) ) |
|
| 17 | 14 15 16 | 3bitr4i | |- ( E! x ph <-> E! y [ y / x ] ph ) |