This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023) (Revised by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sate0 | ⊢ ( 𝑈 ∈ 𝑉 → ( ∅ Sat∈ 𝑈 ) = ( ( ( ∅ Sat ∅ ) ‘ ω ) ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | satefv | ⊢ ( ( ∅ ∈ V ∧ 𝑈 ∈ 𝑉 ) → ( ∅ Sat∈ 𝑈 ) = ( ( ( ∅ Sat ( E ∩ ( ∅ × ∅ ) ) ) ‘ ω ) ‘ 𝑈 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑈 ∈ 𝑉 → ( ∅ Sat∈ 𝑈 ) = ( ( ( ∅ Sat ( E ∩ ( ∅ × ∅ ) ) ) ‘ ω ) ‘ 𝑈 ) ) |
| 4 | xp0 | ⊢ ( ∅ × ∅ ) = ∅ | |
| 5 | 4 | ineq2i | ⊢ ( E ∩ ( ∅ × ∅ ) ) = ( E ∩ ∅ ) |
| 6 | in0 | ⊢ ( E ∩ ∅ ) = ∅ | |
| 7 | 5 6 | eqtri | ⊢ ( E ∩ ( ∅ × ∅ ) ) = ∅ |
| 8 | 7 | oveq2i | ⊢ ( ∅ Sat ( E ∩ ( ∅ × ∅ ) ) ) = ( ∅ Sat ∅ ) |
| 9 | 8 | fveq1i | ⊢ ( ( ∅ Sat ( E ∩ ( ∅ × ∅ ) ) ) ‘ ω ) = ( ( ∅ Sat ∅ ) ‘ ω ) |
| 10 | 9 | fveq1i | ⊢ ( ( ( ∅ Sat ( E ∩ ( ∅ × ∅ ) ) ) ‘ ω ) ‘ 𝑈 ) = ( ( ( ∅ Sat ∅ ) ‘ ω ) ‘ 𝑈 ) |
| 11 | 3 10 | eqtrdi | ⊢ ( 𝑈 ∈ 𝑉 → ( ∅ Sat∈ 𝑈 ) = ( ( ( ∅ Sat ∅ ) ‘ ω ) ‘ 𝑈 ) ) |