This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023) (Revised by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sate0 | |- ( U e. V -> ( (/) SatE U ) = ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | satefv | |- ( ( (/) e. _V /\ U e. V ) -> ( (/) SatE U ) = ( ( ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) ` _om ) ` U ) ) |
|
| 3 | 1 2 | mpan | |- ( U e. V -> ( (/) SatE U ) = ( ( ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) ` _om ) ` U ) ) |
| 4 | xp0 | |- ( (/) X. (/) ) = (/) |
|
| 5 | 4 | ineq2i | |- ( _E i^i ( (/) X. (/) ) ) = ( _E i^i (/) ) |
| 6 | in0 | |- ( _E i^i (/) ) = (/) |
|
| 7 | 5 6 | eqtri | |- ( _E i^i ( (/) X. (/) ) ) = (/) |
| 8 | 7 | oveq2i | |- ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) = ( (/) Sat (/) ) |
| 9 | 8 | fveq1i | |- ( ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) ` _om ) = ( ( (/) Sat (/) ) ` _om ) |
| 10 | 9 | fveq1i | |- ( ( ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) ` _om ) ` U ) = ( ( ( (/) Sat (/) ) ` _om ) ` U ) |
| 11 | 3 10 | eqtrdi | |- ( U e. V -> ( (/) SatE U ) = ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) |