This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 4-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc4v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| rspc4v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | ||
| rspc4v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) | ||
| rspc4v.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜏 ↔ 𝜓 ) ) | ||
| Assertion | rspc4v | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc4v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | rspc4v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | rspc4v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) | |
| 4 | rspc4v.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜏 ↔ 𝜓 ) ) | |
| 5 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑇 ) ) | |
| 6 | 1 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑤 ∈ 𝑈 𝜑 ↔ ∀ 𝑤 ∈ 𝑈 𝜒 ) ) |
| 7 | 2 | ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑤 ∈ 𝑈 𝜒 ↔ ∀ 𝑤 ∈ 𝑈 𝜃 ) ) |
| 8 | 3 | ralbidv | ⊢ ( 𝑧 = 𝐶 → ( ∀ 𝑤 ∈ 𝑈 𝜃 ↔ ∀ 𝑤 ∈ 𝑈 𝜏 ) ) |
| 9 | 6 7 8 | rspc3v | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 𝜑 → ∀ 𝑤 ∈ 𝑈 𝜏 ) ) |
| 10 | 4 | rspcv | ⊢ ( 𝐷 ∈ 𝑈 → ( ∀ 𝑤 ∈ 𝑈 𝜏 → 𝜓 ) ) |
| 11 | 9 10 | sylan9 | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝐷 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 𝜑 → 𝜓 ) ) |
| 12 | 5 11 | sylanbr | ⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑇 ) ∧ 𝐷 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 𝜑 → 𝜓 ) ) |
| 13 | 12 | anasss | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 𝜑 → 𝜓 ) ) |