This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 6-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc6v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| rspc6v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | ||
| rspc6v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) | ||
| rspc6v.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜏 ↔ 𝜂 ) ) | ||
| rspc6v.5 | ⊢ ( 𝑝 = 𝐸 → ( 𝜂 ↔ 𝜁 ) ) | ||
| rspc6v.6 | ⊢ ( 𝑞 = 𝐹 → ( 𝜁 ↔ 𝜓 ) ) | ||
| Assertion | rspc6v | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc6v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | rspc6v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | rspc6v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) | |
| 4 | rspc6v.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜏 ↔ 𝜂 ) ) | |
| 5 | rspc6v.5 | ⊢ ( 𝑝 = 𝐸 → ( 𝜂 ↔ 𝜁 ) ) | |
| 6 | rspc6v.6 | ⊢ ( 𝑞 = 𝐹 → ( 𝜁 ↔ 𝜓 ) ) | |
| 7 | 1 | 2ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜑 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜒 ) ) |
| 8 | 2 | 2ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜒 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜃 ) ) |
| 9 | 3 | 2ralbidv | ⊢ ( 𝑧 = 𝐶 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜃 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜏 ) ) |
| 10 | 4 | 2ralbidv | ⊢ ( 𝑤 = 𝐷 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜏 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜂 ) ) |
| 11 | 7 8 9 10 | rspc4v | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜑 → ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜂 ) ) |
| 12 | 5 6 | rspc2v | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜂 → 𝜓 ) ) |
| 13 | 11 12 | syl9 | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) → ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜑 → 𝜓 ) ) ) |
| 14 | 13 | 3impia | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 𝜑 → 𝜓 ) ) |