This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class D for the second set variable y may depend on the first set variable x . (Contributed by AV, 29-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc2vd.a | |- ( x = A -> ( th <-> ch ) ) |
|
| rspc2vd.b | |- ( y = B -> ( ch <-> ps ) ) |
||
| rspc2vd.c | |- ( ph -> A e. C ) |
||
| rspc2vd.d | |- ( ( ph /\ x = A ) -> D = E ) |
||
| rspc2vd.e | |- ( ph -> B e. E ) |
||
| Assertion | rspc2vd | |- ( ph -> ( A. x e. C A. y e. D th -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2vd.a | |- ( x = A -> ( th <-> ch ) ) |
|
| 2 | rspc2vd.b | |- ( y = B -> ( ch <-> ps ) ) |
|
| 3 | rspc2vd.c | |- ( ph -> A e. C ) |
|
| 4 | rspc2vd.d | |- ( ( ph /\ x = A ) -> D = E ) |
|
| 5 | rspc2vd.e | |- ( ph -> B e. E ) |
|
| 6 | 3 4 | csbied | |- ( ph -> [_ A / x ]_ D = E ) |
| 7 | 5 6 | eleqtrrd | |- ( ph -> B e. [_ A / x ]_ D ) |
| 8 | nfcsb1v | |- F/_ x [_ A / x ]_ D |
|
| 9 | nfv | |- F/ x ch |
|
| 10 | 8 9 | nfralw | |- F/ x A. y e. [_ A / x ]_ D ch |
| 11 | csbeq1a | |- ( x = A -> D = [_ A / x ]_ D ) |
|
| 12 | 11 1 | raleqbidv | |- ( x = A -> ( A. y e. D th <-> A. y e. [_ A / x ]_ D ch ) ) |
| 13 | 10 12 | rspc | |- ( A e. C -> ( A. x e. C A. y e. D th -> A. y e. [_ A / x ]_ D ch ) ) |
| 14 | 3 13 | syl | |- ( ph -> ( A. x e. C A. y e. D th -> A. y e. [_ A / x ]_ D ch ) ) |
| 15 | 2 | rspcv | |- ( B e. [_ A / x ]_ D -> ( A. y e. [_ A / x ]_ D ch -> ps ) ) |
| 16 | 7 14 15 | sylsyld | |- ( ph -> ( A. x e. C A. y e. D th -> ps ) ) |