This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the identity element is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| rspcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| rsp1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | rsp1 | ⊢ ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 1 } ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 2 | rspcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | rsp1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 2 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 5 | 4 | snssd | ⊢ ( 𝑅 ∈ Ring → { 1 } ⊆ 𝐵 ) |
| 6 | 1 2 | rspssid | ⊢ ( ( 𝑅 ∈ Ring ∧ { 1 } ⊆ 𝐵 ) → { 1 } ⊆ ( 𝐾 ‘ { 1 } ) ) |
| 7 | 5 6 | mpdan | ⊢ ( 𝑅 ∈ Ring → { 1 } ⊆ ( 𝐾 ‘ { 1 } ) ) |
| 8 | 3 | fvexi | ⊢ 1 ∈ V |
| 9 | 8 | snss | ⊢ ( 1 ∈ ( 𝐾 ‘ { 1 } ) ↔ { 1 } ⊆ ( 𝐾 ‘ { 1 } ) ) |
| 10 | 7 9 | sylibr | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( 𝐾 ‘ { 1 } ) ) |
| 11 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 12 | 1 2 11 | rspcl | ⊢ ( ( 𝑅 ∈ Ring ∧ { 1 } ⊆ 𝐵 ) → ( 𝐾 ‘ { 1 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 13 | 5 12 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 1 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 14 | 11 2 3 | lidl1el | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐾 ‘ { 1 } ) ∈ ( LIdeal ‘ 𝑅 ) ) → ( 1 ∈ ( 𝐾 ‘ { 1 } ) ↔ ( 𝐾 ‘ { 1 } ) = 𝐵 ) ) |
| 15 | 13 14 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( 1 ∈ ( 𝐾 ‘ { 1 } ) ↔ ( 𝐾 ‘ { 1 } ) = 𝐵 ) ) |
| 16 | 10 15 | mpbid | ⊢ ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 1 } ) = 𝐵 ) |