This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the identity element is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcl.k | |- K = ( RSpan ` R ) |
|
| rspcl.b | |- B = ( Base ` R ) |
||
| rsp1.o | |- .1. = ( 1r ` R ) |
||
| Assertion | rsp1 | |- ( R e. Ring -> ( K ` { .1. } ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcl.k | |- K = ( RSpan ` R ) |
|
| 2 | rspcl.b | |- B = ( Base ` R ) |
|
| 3 | rsp1.o | |- .1. = ( 1r ` R ) |
|
| 4 | 2 3 | ringidcl | |- ( R e. Ring -> .1. e. B ) |
| 5 | 4 | snssd | |- ( R e. Ring -> { .1. } C_ B ) |
| 6 | 1 2 | rspssid | |- ( ( R e. Ring /\ { .1. } C_ B ) -> { .1. } C_ ( K ` { .1. } ) ) |
| 7 | 5 6 | mpdan | |- ( R e. Ring -> { .1. } C_ ( K ` { .1. } ) ) |
| 8 | 3 | fvexi | |- .1. e. _V |
| 9 | 8 | snss | |- ( .1. e. ( K ` { .1. } ) <-> { .1. } C_ ( K ` { .1. } ) ) |
| 10 | 7 9 | sylibr | |- ( R e. Ring -> .1. e. ( K ` { .1. } ) ) |
| 11 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 12 | 1 2 11 | rspcl | |- ( ( R e. Ring /\ { .1. } C_ B ) -> ( K ` { .1. } ) e. ( LIdeal ` R ) ) |
| 13 | 5 12 | mpdan | |- ( R e. Ring -> ( K ` { .1. } ) e. ( LIdeal ` R ) ) |
| 14 | 11 2 3 | lidl1el | |- ( ( R e. Ring /\ ( K ` { .1. } ) e. ( LIdeal ` R ) ) -> ( .1. e. ( K ` { .1. } ) <-> ( K ` { .1. } ) = B ) ) |
| 15 | 13 14 | mpdan | |- ( R e. Ring -> ( .1. e. ( K ` { .1. } ) <-> ( K ` { .1. } ) = B ) ) |
| 16 | 10 15 | mpbid | |- ( R e. Ring -> ( K ` { .1. } ) = B ) |