This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base ordering relationship for exponentiation of positive reals to a fixed positive integer exponent. (Contributed by Stefan O'Rear, 16-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexpmord | |- ( ( N e. NN /\ A e. RR+ /\ B e. RR+ ) -> ( A < B <-> ( A ^ N ) < ( B ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( a = b -> ( a ^ N ) = ( b ^ N ) ) |
|
| 2 | oveq1 | |- ( a = A -> ( a ^ N ) = ( A ^ N ) ) |
|
| 3 | oveq1 | |- ( a = B -> ( a ^ N ) = ( B ^ N ) ) |
|
| 4 | rpssre | |- RR+ C_ RR |
|
| 5 | rpre | |- ( a e. RR+ -> a e. RR ) |
|
| 6 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 7 | reexpcl | |- ( ( a e. RR /\ N e. NN0 ) -> ( a ^ N ) e. RR ) |
|
| 8 | 5 6 7 | syl2anr | |- ( ( N e. NN /\ a e. RR+ ) -> ( a ^ N ) e. RR ) |
| 9 | simplrl | |- ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> a e. RR+ ) |
|
| 10 | 9 | rpred | |- ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> a e. RR ) |
| 11 | simplrr | |- ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> b e. RR+ ) |
|
| 12 | 11 | rpred | |- ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> b e. RR ) |
| 13 | 9 | rpge0d | |- ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> 0 <_ a ) |
| 14 | simpr | |- ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> a < b ) |
|
| 15 | simpll | |- ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> N e. NN ) |
|
| 16 | expmordi | |- ( ( ( a e. RR /\ b e. RR ) /\ ( 0 <_ a /\ a < b ) /\ N e. NN ) -> ( a ^ N ) < ( b ^ N ) ) |
|
| 17 | 10 12 13 14 15 16 | syl221anc | |- ( ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) /\ a < b ) -> ( a ^ N ) < ( b ^ N ) ) |
| 18 | 17 | ex | |- ( ( N e. NN /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( a < b -> ( a ^ N ) < ( b ^ N ) ) ) |
| 19 | 1 2 3 4 8 18 | ltord1 | |- ( ( N e. NN /\ ( A e. RR+ /\ B e. RR+ ) ) -> ( A < B <-> ( A ^ N ) < ( B ^ N ) ) ) |
| 20 | 19 | 3impb | |- ( ( N e. NN /\ A e. RR+ /\ B e. RR+ ) -> ( A < B <-> ( A ^ N ) < ( B ^ N ) ) ) |