This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of tpos F when dom F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmtpos | ⊢ ( Rel dom 𝐹 → dom tpos 𝐹 = ◡ dom 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp | ⊢ ¬ ∅ ∈ ( V × V ) | |
| 2 | ssel | ⊢ ( dom 𝐹 ⊆ ( V × V ) → ( ∅ ∈ dom 𝐹 → ∅ ∈ ( V × V ) ) ) | |
| 3 | 1 2 | mtoi | ⊢ ( dom 𝐹 ⊆ ( V × V ) → ¬ ∅ ∈ dom 𝐹 ) |
| 4 | df-rel | ⊢ ( Rel dom 𝐹 ↔ dom 𝐹 ⊆ ( V × V ) ) | |
| 5 | reldmtpos | ⊢ ( Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹 ) | |
| 6 | 3 4 5 | 3imtr4i | ⊢ ( Rel dom 𝐹 → Rel dom tpos 𝐹 ) |
| 7 | relcnv | ⊢ Rel ◡ dom 𝐹 | |
| 8 | 6 7 | jctir | ⊢ ( Rel dom 𝐹 → ( Rel dom tpos 𝐹 ∧ Rel ◡ dom 𝐹 ) ) |
| 9 | vex | ⊢ 𝑧 ∈ V | |
| 10 | brtpos | ⊢ ( 𝑧 ∈ V → ( 〈 𝑥 , 𝑦 〉 tpos 𝐹 𝑧 ↔ 〈 𝑦 , 𝑥 〉 𝐹 𝑧 ) ) | |
| 11 | 9 10 | mp1i | ⊢ ( Rel dom 𝐹 → ( 〈 𝑥 , 𝑦 〉 tpos 𝐹 𝑧 ↔ 〈 𝑦 , 𝑥 〉 𝐹 𝑧 ) ) |
| 12 | 11 | exbidv | ⊢ ( Rel dom 𝐹 → ( ∃ 𝑧 〈 𝑥 , 𝑦 〉 tpos 𝐹 𝑧 ↔ ∃ 𝑧 〈 𝑦 , 𝑥 〉 𝐹 𝑧 ) ) |
| 13 | opex | ⊢ 〈 𝑥 , 𝑦 〉 ∈ V | |
| 14 | 13 | eldm | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ dom tpos 𝐹 ↔ ∃ 𝑧 〈 𝑥 , 𝑦 〉 tpos 𝐹 𝑧 ) |
| 15 | vex | ⊢ 𝑥 ∈ V | |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | 15 16 | opelcnv | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ dom 𝐹 ↔ 〈 𝑦 , 𝑥 〉 ∈ dom 𝐹 ) |
| 18 | opex | ⊢ 〈 𝑦 , 𝑥 〉 ∈ V | |
| 19 | 18 | eldm | ⊢ ( 〈 𝑦 , 𝑥 〉 ∈ dom 𝐹 ↔ ∃ 𝑧 〈 𝑦 , 𝑥 〉 𝐹 𝑧 ) |
| 20 | 17 19 | bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ dom 𝐹 ↔ ∃ 𝑧 〈 𝑦 , 𝑥 〉 𝐹 𝑧 ) |
| 21 | 12 14 20 | 3bitr4g | ⊢ ( Rel dom 𝐹 → ( 〈 𝑥 , 𝑦 〉 ∈ dom tpos 𝐹 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ dom 𝐹 ) ) |
| 22 | 21 | eqrelrdv2 | ⊢ ( ( ( Rel dom tpos 𝐹 ∧ Rel ◡ dom 𝐹 ) ∧ Rel dom 𝐹 ) → dom tpos 𝐹 = ◡ dom 𝐹 ) |
| 23 | 8 22 | mpancom | ⊢ ( Rel dom 𝐹 → dom tpos 𝐹 = ◡ dom 𝐹 ) |