This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnmpt0f.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rnmpt0f.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| rnmpt0f.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | ||
| Assertion | rnmpt0f | ⊢ ( 𝜑 → ( ran 𝐹 = ∅ ↔ 𝐴 = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt0f.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rnmpt0f.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | rnmpt0f.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 4 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉 ) ) |
| 5 | 1 4 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
| 6 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 8 | 7 | eqcomd | ⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 9 | 8 | eqeq1d | ⊢ ( 𝜑 → ( 𝐴 = ∅ ↔ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) ) |
| 10 | dm0rn0 | ⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) ) |
| 12 | 3 | rneqi | ⊢ ran 𝐹 = ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ran 𝐹 = ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 14 | 13 | eqcomd | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ran 𝐹 ) |
| 15 | 14 | eqeq1d | ⊢ ( 𝜑 → ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran 𝐹 = ∅ ) ) |
| 16 | 9 11 15 | 3bitrrd | ⊢ ( 𝜑 → ( ran 𝐹 = ∅ ↔ 𝐴 = ∅ ) ) |