This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnmpt0f.1 | |- F/ x ph |
|
| rnmpt0f.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
| rnmpt0f.3 | |- F = ( x e. A |-> B ) |
||
| Assertion | rnmpt0f | |- ( ph -> ( ran F = (/) <-> A = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt0f.1 | |- F/ x ph |
|
| 2 | rnmpt0f.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 3 | rnmpt0f.3 | |- F = ( x e. A |-> B ) |
|
| 4 | 2 | ex | |- ( ph -> ( x e. A -> B e. V ) ) |
| 5 | 1 4 | ralrimi | |- ( ph -> A. x e. A B e. V ) |
| 6 | dmmptg | |- ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A ) |
|
| 7 | 5 6 | syl | |- ( ph -> dom ( x e. A |-> B ) = A ) |
| 8 | 7 | eqcomd | |- ( ph -> A = dom ( x e. A |-> B ) ) |
| 9 | 8 | eqeq1d | |- ( ph -> ( A = (/) <-> dom ( x e. A |-> B ) = (/) ) ) |
| 10 | dm0rn0 | |- ( dom ( x e. A |-> B ) = (/) <-> ran ( x e. A |-> B ) = (/) ) |
|
| 11 | 10 | a1i | |- ( ph -> ( dom ( x e. A |-> B ) = (/) <-> ran ( x e. A |-> B ) = (/) ) ) |
| 12 | 3 | rneqi | |- ran F = ran ( x e. A |-> B ) |
| 13 | 12 | a1i | |- ( ph -> ran F = ran ( x e. A |-> B ) ) |
| 14 | 13 | eqcomd | |- ( ph -> ran ( x e. A |-> B ) = ran F ) |
| 15 | 14 | eqeq1d | |- ( ph -> ( ran ( x e. A |-> B ) = (/) <-> ran F = (/) ) ) |
| 16 | 9 11 15 | 3bitrrd | |- ( ph -> ( ran F = (/) <-> A = (/) ) ) |