This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | ||
| rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | ||
| Assertion | rngcrescrhm | ⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( ( 𝐶 ↾s 𝑅 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 3 | rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | |
| 5 | eqid | ⊢ ( 𝐶 ↾cat 𝐻 ) = ( 𝐶 ↾cat 𝐻 ) | |
| 6 | 2 | fvexi | ⊢ 𝐶 ∈ V |
| 7 | 6 | a1i | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 8 | incom | ⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) | |
| 9 | 3 8 | eqtrdi | ⊢ ( 𝜑 → 𝑅 = ( 𝑈 ∩ Ring ) ) |
| 10 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Ring ) ∈ V ) | |
| 11 | 1 10 | syl | ⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ∈ V ) |
| 12 | 9 11 | eqeltrd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 13 | inss1 | ⊢ ( Ring ∩ 𝑈 ) ⊆ Ring | |
| 14 | 3 13 | eqsstrdi | ⊢ ( 𝜑 → 𝑅 ⊆ Ring ) |
| 15 | xpss12 | ⊢ ( ( 𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring ) → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) | |
| 16 | 14 14 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) |
| 17 | rhmfn | ⊢ RingHom Fn ( Ring × Ring ) | |
| 18 | fnssresb | ⊢ ( RingHom Fn ( Ring × Ring ) → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) ) | |
| 19 | 17 18 | mp1i | ⊢ ( 𝜑 → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) ) |
| 20 | 16 19 | mpbird | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ) |
| 21 | 4 | fneq1i | ⊢ ( 𝐻 Fn ( 𝑅 × 𝑅 ) ↔ ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ) |
| 22 | 20 21 | sylibr | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑅 × 𝑅 ) ) |
| 23 | 5 7 12 22 | rescval2 | ⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( ( 𝐶 ↾s 𝑅 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |