This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| rngcrescrhm.c | |- C = ( RngCat ` U ) |
||
| rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
||
| rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
||
| Assertion | rngcrescrhm | |- ( ph -> ( C |`cat H ) = ( ( C |`s R ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| 2 | rngcrescrhm.c | |- C = ( RngCat ` U ) |
|
| 3 | rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
|
| 4 | rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
|
| 5 | eqid | |- ( C |`cat H ) = ( C |`cat H ) |
|
| 6 | 2 | fvexi | |- C e. _V |
| 7 | 6 | a1i | |- ( ph -> C e. _V ) |
| 8 | incom | |- ( Ring i^i U ) = ( U i^i Ring ) |
|
| 9 | 3 8 | eqtrdi | |- ( ph -> R = ( U i^i Ring ) ) |
| 10 | inex1g | |- ( U e. V -> ( U i^i Ring ) e. _V ) |
|
| 11 | 1 10 | syl | |- ( ph -> ( U i^i Ring ) e. _V ) |
| 12 | 9 11 | eqeltrd | |- ( ph -> R e. _V ) |
| 13 | inss1 | |- ( Ring i^i U ) C_ Ring |
|
| 14 | 3 13 | eqsstrdi | |- ( ph -> R C_ Ring ) |
| 15 | xpss12 | |- ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) ) |
|
| 16 | 14 14 15 | syl2anc | |- ( ph -> ( R X. R ) C_ ( Ring X. Ring ) ) |
| 17 | rhmfn | |- RingHom Fn ( Ring X. Ring ) |
|
| 18 | fnssresb | |- ( RingHom Fn ( Ring X. Ring ) -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) |
|
| 19 | 17 18 | mp1i | |- ( ph -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) |
| 20 | 16 19 | mpbird | |- ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
| 21 | 4 | fneq1i | |- ( H Fn ( R X. R ) <-> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
| 22 | 20 21 | sylibr | |- ( ph -> H Fn ( R X. R ) ) |
| 23 | 5 7 12 22 | rescval2 | |- ( ph -> ( C |`cat H ) = ( ( C |`s R ) sSet <. ( Hom ` ndx ) , H >. ) ) |