This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiples of the unit vector form a subalgebra of the vectors. (Contributed by SN, 16-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnasclassa.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| rnasclassa.u | ⊢ 𝑈 = ( 𝑊 ↾s ran 𝐴 ) | ||
| rnasclassa.w | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) | ||
| Assertion | rnasclassa | ⊢ ( 𝜑 → 𝑈 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnasclassa.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | rnasclassa.u | ⊢ 𝑈 = ( 𝑊 ↾s ran 𝐴 ) | |
| 3 | rnasclassa.w | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) | |
| 4 | ssidd | ⊢ ( 𝜑 → ran 𝐴 ⊆ ran 𝐴 ) | |
| 5 | 1 3 | rnasclsubrg | ⊢ ( 𝜑 → ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) |
| 6 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 7 | 1 6 | issubassa2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) → ( ran 𝐴 ∈ ( LSubSp ‘ 𝑊 ) ↔ ran 𝐴 ⊆ ran 𝐴 ) ) |
| 8 | 2 6 | issubassa3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ ran 𝐴 ∈ ( LSubSp ‘ 𝑊 ) ) ) → 𝑈 ∈ AssAlg ) |
| 9 | 8 | expr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) → ( ran 𝐴 ∈ ( LSubSp ‘ 𝑊 ) → 𝑈 ∈ AssAlg ) ) |
| 10 | 7 9 | sylbird | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) → ( ran 𝐴 ⊆ ran 𝐴 → 𝑈 ∈ AssAlg ) ) |
| 11 | 3 5 10 | syl2anc | ⊢ ( 𝜑 → ( ran 𝐴 ⊆ ran 𝐴 → 𝑈 ∈ AssAlg ) ) |
| 12 | 4 11 | mpd | ⊢ ( 𝜑 → 𝑈 ∈ AssAlg ) |