This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiples of the unit vector form a subalgebra of the vectors. (Contributed by SN, 16-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnasclassa.a | |- A = ( algSc ` W ) |
|
| rnasclassa.u | |- U = ( W |`s ran A ) |
||
| rnasclassa.w | |- ( ph -> W e. AssAlg ) |
||
| Assertion | rnasclassa | |- ( ph -> U e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnasclassa.a | |- A = ( algSc ` W ) |
|
| 2 | rnasclassa.u | |- U = ( W |`s ran A ) |
|
| 3 | rnasclassa.w | |- ( ph -> W e. AssAlg ) |
|
| 4 | ssidd | |- ( ph -> ran A C_ ran A ) |
|
| 5 | 1 3 | rnasclsubrg | |- ( ph -> ran A e. ( SubRing ` W ) ) |
| 6 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 7 | 1 6 | issubassa2 | |- ( ( W e. AssAlg /\ ran A e. ( SubRing ` W ) ) -> ( ran A e. ( LSubSp ` W ) <-> ran A C_ ran A ) ) |
| 8 | 2 6 | issubassa3 | |- ( ( W e. AssAlg /\ ( ran A e. ( SubRing ` W ) /\ ran A e. ( LSubSp ` W ) ) ) -> U e. AssAlg ) |
| 9 | 8 | expr | |- ( ( W e. AssAlg /\ ran A e. ( SubRing ` W ) ) -> ( ran A e. ( LSubSp ` W ) -> U e. AssAlg ) ) |
| 10 | 7 9 | sylbird | |- ( ( W e. AssAlg /\ ran A e. ( SubRing ` W ) ) -> ( ran A C_ ran A -> U e. AssAlg ) ) |
| 11 | 3 5 10 | syl2anc | |- ( ph -> ( ran A C_ ran A -> U e. AssAlg ) ) |
| 12 | 4 11 | mpd | |- ( ph -> U e. AssAlg ) |