This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | moi.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| moi.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | mob | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moi.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | moi.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | elex | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ V ) | |
| 4 | nfv | ⊢ Ⅎ 𝑥 𝐵 ∈ V | |
| 5 | nfmo1 | ⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 | |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 7 | 4 5 6 | nf3an | ⊢ Ⅎ 𝑥 ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) |
| 8 | nfv | ⊢ Ⅎ 𝑥 ( 𝐴 = 𝐵 ↔ 𝜒 ) | |
| 9 | 7 8 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) |
| 10 | 1 | 3anbi3d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) ↔ ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) ) ) |
| 11 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) | |
| 12 | 11 | bibi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐵 ↔ 𝜒 ) ↔ ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝑥 = 𝐵 ↔ 𝜒 ) ) ↔ ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) ) |
| 14 | 2 | mob2 | ⊢ ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝑥 = 𝐵 ↔ 𝜒 ) ) |
| 15 | 9 13 14 | vtoclg1f | ⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) |
| 16 | 15 | com12 | ⊢ ( ( 𝐵 ∈ V ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) |
| 17 | 16 | 3expib | ⊢ ( 𝐵 ∈ V → ( ( ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) ) |
| 18 | 3 17 | syl | ⊢ ( 𝐵 ∈ 𝐷 → ( ( ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) ) |
| 19 | 18 | com3r | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝐵 ∈ 𝐷 → ( ( ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) ) |
| 21 | 20 | 3impib | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) |