This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmoi.b | |- ( x = B -> ( ph <-> ps ) ) |
|
| rmoi.c | |- ( x = C -> ( ph <-> ch ) ) |
||
| Assertion | rmob | |- ( ( E* x e. A ph /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoi.b | |- ( x = B -> ( ph <-> ps ) ) |
|
| 2 | rmoi.c | |- ( x = C -> ( ph <-> ch ) ) |
|
| 3 | df-rmo | |- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
|
| 4 | simprl | |- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> B e. A ) |
|
| 5 | eleq1 | |- ( B = C -> ( B e. A <-> C e. A ) ) |
|
| 6 | 4 5 | syl5ibcom | |- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( B = C -> C e. A ) ) |
| 7 | simpl | |- ( ( C e. A /\ ch ) -> C e. A ) |
|
| 8 | 7 | a1i | |- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( ( C e. A /\ ch ) -> C e. A ) ) |
| 9 | 4 | anim1i | |- ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> ( B e. A /\ C e. A ) ) |
| 10 | simpll | |- ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> E* x ( x e. A /\ ph ) ) |
|
| 11 | simplr | |- ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> ( B e. A /\ ps ) ) |
|
| 12 | eleq1 | |- ( x = B -> ( x e. A <-> B e. A ) ) |
|
| 13 | 12 1 | anbi12d | |- ( x = B -> ( ( x e. A /\ ph ) <-> ( B e. A /\ ps ) ) ) |
| 14 | eleq1 | |- ( x = C -> ( x e. A <-> C e. A ) ) |
|
| 15 | 14 2 | anbi12d | |- ( x = C -> ( ( x e. A /\ ph ) <-> ( C e. A /\ ch ) ) ) |
| 16 | 13 15 | mob | |- ( ( ( B e. A /\ C e. A ) /\ E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |
| 17 | 9 10 11 16 | syl3anc | |- ( ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) /\ C e. A ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |
| 18 | 17 | ex | |- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( C e. A -> ( B = C <-> ( C e. A /\ ch ) ) ) ) |
| 19 | 6 8 18 | pm5.21ndd | |- ( ( E* x ( x e. A /\ ph ) /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |
| 20 | 3 19 | sylanb | |- ( ( E* x e. A ph /\ ( B e. A /\ ps ) ) -> ( B = C <-> ( C e. A /\ ch ) ) ) |