This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum of the ring module. (Contributed by Thierry Arnoux, 9-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmlsm | ⊢ ( 𝑅 ∈ 𝑉 → ( LSSum ‘ 𝑅 ) = ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( LSSum ‘ 𝑅 ) = ( LSSum ‘ 𝑅 ) | |
| 4 | 1 2 3 | lsmfval | ⊢ ( 𝑅 ∈ 𝑉 → ( LSSum ‘ 𝑅 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑅 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑅 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 5 | fvex | ⊢ ( ringLMod ‘ 𝑅 ) ∈ V | |
| 6 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 7 | rlmplusg | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 8 | eqid | ⊢ ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 9 | 6 7 8 | lsmfval | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ V → ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑅 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑅 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 10 | 5 9 | mp1i | ⊢ ( 𝑅 ∈ 𝑉 → ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑅 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑅 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) |
| 11 | 4 10 | eqtr4d | ⊢ ( 𝑅 ∈ 𝑉 → ( LSSum ‘ 𝑅 ) = ( LSSum ‘ ( ringLMod ‘ 𝑅 ) ) ) |