This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 5-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmvneg | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) | |
| 2 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 3 | 2 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 4 | rlmplusg | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 5 | 4 | a1i | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 6 | 5 | oveqd | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑦 ) ) |
| 7 | 1 3 6 | grpinvpropd | ⊢ ( ⊤ → ( invg ‘ 𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 8 | 7 | mptru | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) |