This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum of the ring module. (Contributed by Thierry Arnoux, 9-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmlsm | |- ( R e. V -> ( LSSum ` R ) = ( LSSum ` ( ringLMod ` R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 2 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 3 | eqid | |- ( LSSum ` R ) = ( LSSum ` R ) |
|
| 4 | 1 2 3 | lsmfval | |- ( R e. V -> ( LSSum ` R ) = ( t e. ~P ( Base ` R ) , u e. ~P ( Base ` R ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` R ) y ) ) ) ) |
| 5 | fvex | |- ( ringLMod ` R ) e. _V |
|
| 6 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
| 7 | rlmplusg | |- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
|
| 8 | eqid | |- ( LSSum ` ( ringLMod ` R ) ) = ( LSSum ` ( ringLMod ` R ) ) |
|
| 9 | 6 7 8 | lsmfval | |- ( ( ringLMod ` R ) e. _V -> ( LSSum ` ( ringLMod ` R ) ) = ( t e. ~P ( Base ` R ) , u e. ~P ( Base ` R ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` R ) y ) ) ) ) |
| 10 | 5 9 | mp1i | |- ( R e. V -> ( LSSum ` ( ringLMod ` R ) ) = ( t e. ~P ( Base ` R ) , u e. ~P ( Base ` R ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` R ) y ) ) ) ) |
| 11 | 4 10 | eqtr4d | |- ( R e. V -> ( LSSum ` R ) = ( LSSum ` ( ringLMod ` R ) ) ) |