This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlimres | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ↾ 𝐵 ) ⇝𝑟 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( dom 𝐹 ∩ 𝐵 ) ⊆ dom 𝐹 | |
| 2 | ssralv | ⊢ ( ( dom 𝐹 ∩ 𝐵 ) ⊆ dom 𝐹 → ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) |
| 4 | 3 | reximi | ⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) |
| 5 | 4 | ralimi | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) |
| 6 | 5 | anim2i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 7 | 6 | a1i | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 8 | rlimf | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 9 | rlimss | ⊢ ( 𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ ) | |
| 10 | eqidd | ⊢ ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 11 | 8 9 10 | rlim | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ⇝𝑟 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 12 | fssres | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ ( dom 𝐹 ∩ 𝐵 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ ℂ ) | |
| 13 | 8 1 12 | sylancl | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ ℂ ) |
| 14 | resres | ⊢ ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐵 ) = ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) | |
| 15 | ffn | ⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → 𝐹 Fn dom 𝐹 ) | |
| 16 | fnresdm | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) | |
| 17 | 8 15 16 | 3syl | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) |
| 18 | 17 | reseq1d | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐵 ) = ( 𝐹 ↾ 𝐵 ) ) |
| 19 | 14 18 | eqtr3id | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
| 20 | 19 | feq1d | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ ℂ ↔ ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ ℂ ) ) |
| 21 | 13 20 | mpbid | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ ℂ ) |
| 22 | 1 9 | sstrid | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( dom 𝐹 ∩ 𝐵 ) ⊆ ℝ ) |
| 23 | elinel2 | ⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) → 𝑧 ∈ 𝐵 ) | |
| 24 | 23 | fvresd | ⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 26 | 21 22 25 | rlim | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( ( 𝐹 ↾ 𝐵 ) ⇝𝑟 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( dom 𝐹 ∩ 𝐵 ) ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 27 | 7 11 26 | 3imtr4d | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ↾ 𝐵 ) ⇝𝑟 𝐴 ) ) |
| 28 | 27 | pm2.43i | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ↾ 𝐵 ) ⇝𝑟 𝐴 ) |